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Abstract 

 

This work presents the design of S690 high-strength steel plate girder beams, with welded sections and longitudinal 
stiffeners, subjected to combined N-M-V internal forces, as is usually the case of steel beams used in steel and 
composite steel-concrete bridge decks. The ultimate strength of this type of slender beams is evaluated by adopting 
the formulation proposed in the EN 1993-1-5 standard and the recently proposed formulation by Biscaya [1] for steel 
plate girders. A parametric study is carried out comparing the results obtained by these formulations with the results 
obtained by physically and geometrically nonlinear finite element models (GMNIA). Based on this study, it is shown 
that the new N-M-V interaction equations proposed by Biscaya give better results in relation to those obtained by the 
current EN 1993-1-5 formulation, both for HSS 690 plate girder beams with longitudinal stiffeners. 

Keywords: N-M-V interaction, EN 1993-1-5, high strength steel S690, slender plate girder, longitudinal stiffeners, 
cable stayed bridges. 

1. Introduction 
1.1. Overview 

Slender plate girders strengthened with transverse and 
longitudinal stiffeners have been increasingly used in 
the design of cable-stayed bridges in the past few years. 
Besides being an economical solution, it allows the 
construction of bridges with medium to long spans, 
something that is important nowadays. However, the 
design of this structures may become a challenge to the 
most designers, once the cable-stayed bridge decks, 
supported by the slender plate I-girders, are subjected 
to high compression forces, apart from bending and 
shear that are commonly present in those structures. 
Thus, to ensure the safety of these steel I-girders, 
N-M-V interaction should be checked. Though, it has 
been proven that the formulations present in the current 
version of EN 1993-1-5 [2] does not give the best 
assessment of the real interaction of the forces. In that 
regard, it is worth noting the investigations conducted 
by Sinur and Beg [3, 4], and Jáger and Kӧvesdi [5, 6], 
who have numerically and experimentally studied the 
bending-shear interaction (M-V interaction) without 
compression for a large range of stiffened and 
unstiffened I-girders. Recently, Biscaya [7] studied the 
behaviour of unstiffened I-girders to the interaction of 
N-M-V stresses, developing expressions that proven to 
give better results than the current formulation given by 
EN 1993-1-5. Thus, in partnership with studies for 
common resistance steels (S355), one of the main goals 
of this study is to verify if the formulation developed for 
slender plate girders can be extended to longitudinally 
stiffened I-girders for high strength steels (S690). If not, 
improvements will be given to obtain a general method 
of calculation. Finally, it will be possible to compare the 
new Biscaya proposal for the N-M-V interaction 
stresses with the standard formulations. 

 

1.2. N-M-V interaction following the EN 1993-1-5 
 

Following the EN 1993-1-5 [2] principles, considering 
the effective width method (EWM), the design 
verification of slender steel plate I-girders to the N-M-V 
interaction is checked by the next equations, depending 
on the compression level of the web. Neglecting the 
eccentricity due to local web bucking, 𝑒𝑁, the relations 
between the applied and resistance forces are defined 

by 𝜂1 =
𝑀𝐸𝑑

𝑀𝑒𝑓𝑓.𝑅𝑑
, �̅�3 =

𝑉𝐸𝑑

𝑉𝑏𝑤.𝑅𝑑
 and 𝜂4 =

𝑁𝐸𝑑

𝑁𝑒𝑓𝑓.𝑅𝑑
, ensuring 

that those values are always lower or equal to the unit. 
According to the current European standard, the N-M-V 
surface has two different resistance levels, depending 
on whether the web is fully compressed or not 
(Figure 1), which is not believed to make sense once it 
does not form a continuous surface of resistance to the 
N-M-V interaction. Approximately to 45o with the N-M 
plane, there is clearly a mismatch of the resistance 
surface. In fact, this can lead to uncertainties since it 
becomes unclear how to design these elements in the 
vicinity of this discontinuity. 

 

Figure 1: N-M-V interaction diagram given in EN 1993-1-5 [7] 



 
 

𝜂1 + 𝜂4 + (1 − 𝜂1.𝑓). (2�̅�3 − 1)
𝜇 = 1 , 𝜂1 ≥ 𝜂1.𝑓 (1) 2.2.1. Model 1 – 1 General Shape considering 𝜽 

 

This first model intends to be as close as possible 
to reality, considering the torsional stiffness of the 
longitudinal stiffener. For this purpose, to quantify 
the critical stresses 𝜎𝑐𝑟.𝑝 and 𝜏𝑐𝑟, it will be 

necessary to use the EBPlate [8] functionalities, 
an automatic numerical calculation software. 
 

�̅�3 = �̅�3
𝑚á𝑥 +

𝑉𝑏𝑓.𝑅𝑑

𝑉𝑏𝑤.𝑅𝑑
.

{
 

 
1 − [

𝑀𝐸𝑑

𝑀𝑓.𝑅𝑑 . (1 −
𝑁𝐸𝑑

2.𝑁𝑓.𝑅𝑑
)
]

2

}
 

 
 , 𝜂1 < 𝜂1.𝑓 (2) 

where �̅�3
𝑚á𝑥 is the maximum value of �̅�3 obtained accordingly 

to Eq. 1, and 𝑁𝑓.𝑅𝑑 is the ultimate compressive resistance of 

a single flange, hence it is always multiplied by the factor 2. 

2.2.2. Model 2 – 2 General Shape neglecting 𝜽 
 

The analysis of this second model turns out to be 
the first attempt to remove the torsional stiffness 

𝜂1.𝑓 =

𝑀𝑓.𝑅𝑑(1 −
𝑁𝐸𝑑

2. 𝑁𝑓.𝑅𝑑
)

𝑀𝑒𝑓𝑓.𝑅𝑑 . (1 − 𝜂4)
 , if web not fully compressed 

(3) 

from the longitudinal stiffener. It was decided to 
divide the trapezoidal closed section, which 
present high values of 𝜃, in two open sections, 
where the values of torsional stiffness end up 
being limited (Figure 3). It should be noted that 
each one of these stiffeners must be modelled with 
half of the properties of the longitudinal stiffener 

and the adjacent parts of the plate, 𝛿′′ =
𝛿′

2
 and 

𝛾′′ =
𝛾′

2
, ensuring that 𝜃 = 0. The values of 𝜎𝑐𝑟.𝑝 

and 𝜏𝑐𝑟 were obtained though EBP. 
 

  
 
 
 
 
 

2.2.3. Model 3 - 1 General Shape neglecting 𝜽 
 

This model follows almost entirely what was 
presented for Model 1, with the difference that in 
the present case the relative torsional stiffness 
must me 𝜃 = 0. It is intended to create a design 
model that is similar to what is presented in the 
EN 1993-1-5 [2], where the torsional stiffness is 
neglected. The longitudinal stiffener must be 
created with the properties established in Model 1, 
considering an adjacent part of the plate, 𝛾′ and 

𝛿′. The values of 𝜎𝑐𝑟.𝑝 and 𝜏𝑐𝑟 were obtained 

though EBPlate. 
 

2.2.4. Model 4 – EN 1993-1-5 
 

The last model is entirely based on the 
formulations presented in EN 1993-1-5, which 
means that the critical stresses 𝜎𝑐𝑟.𝑝 and 𝜏𝑐𝑟 were 

obtained through the EN 1993-1-5 formulas, 
neglecting the effect of the torsional stiffness of the 
longitudinal stiffener. 
 

To have a solid and reliable basis for comparison, 
numerical models for all geometries were 
developed using finite element analysis software 
Abaqus [9], which are the comparison term 
between the different models. 

𝜂1.𝑓 = 0 , if web fully compressed 
𝜇 = (𝜂1.𝑓 + 0,2)

15 + 1 

 
2. Design methods to obtain the critical stresses 
2.1. Investigated parameter range 
 

The definition of the geometries that were considered in this 
analysis was made in such a way that accounted for a vast 
range of typical plate girders. A total of 80 cross-sections 
were selected using the following parameters: 

▪ 
ℎ𝑤

𝑡𝑤
= [60, 80, 100, 120, 140, 160, 180, 200, 220, 240] 

▪ ℎ𝑤 = 1000𝑚𝑚 ▪ 𝑏𝑠𝑖 = 100𝑚𝑚 ▪ 𝑏𝑠𝑠 = 50𝑚𝑚 

▪ 𝛾 = [25, 50, 75, 100] ▪ 𝛼 =
𝑎

ℎ𝑤
= [1, 2] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2. Torsional stiffness of the longitudinal stiffener 
       (𝝈𝒄𝒓.𝒑, 𝝉𝒄𝒓) 
 

First, the torsional stiffness of the longitudinal stiffener needs 
to be assessed. Thus, 4 different models were developed to 
verify the need to consider, or not, the torsional stiffness of 
the longitudinal stiffener, something that should be neglected 
according to the standard EN 1993-1-5 [2]. In that regard, the 
critical stresses 𝜎𝑐𝑟.𝑝, for the compression and bending 

moment, and 𝜏𝑐𝑟, for the shear stress, were obtained for each 
model, whereas everything else follows the EN 1993-1-5, 
particularly the calculation of the critical stresses 𝜎𝑐𝑟.𝑙𝑜𝑐 and 

𝜎𝑐𝑟.𝑐. 
 

Figure 2: Design of S690 slender plate I-girders under combined 
shear, bending and compression 

Figure 3: Study of the closed section longitudinal 
stiffener as two open section stiffeners 



 
 

3. Numerical model of non-linear analysis 
3.1. Model assumptions 
 

Several numerical models were built up using the 
multi-purpose code Abaqus-Python [9] interpreter and 
MATLAB [10] subroutines. The analysis is conducted using 
the Modified Riks Method [11] and include equivalent 
geometric imperfections and material non-linearity 
(GMNIA). Modified Riks Method is chosen as it allows to 
overcome the convergence problems associated with 
solving non-linear systems of equations, by using an 
iterative procedure of variation of the applied load. Still, 
some convergence problems were found in some models, 
leading to incorrect results, commonly known as  
back-tracking. For the number of plate elements, studies 
were carried out to find out which solution allows to 
reproduce the structural behaviour with enough accuracy, 
and it was concluded that considering a square panel with 
𝛼 = 1, 30 quadrangular elements along the longitudinal 
edges attend the purpose of this investigation. For the 
boundary conditions, studies were carried out to 
understand which ones suited better this study, confirming 
that the longitudinally stiffened slender plates and I-girders 
should be designed with the four edges simply supported. 
 

3.2. Material models 
 

Following the von Mises criterion in the numerical 
calculation, the material model used behaves elastically 
until it reaches the yield stress 𝑓𝑦 = 690 MPa, with a Young 

modulus equal to 210 GPa. Once the elastic properties of 
the material are fully utilized, a nominal hardening phase 
takes place until it reaches the ultimate resistance of the 
structure, 𝑓𝑢. The properties used to define the material 
model are listed in Table 1 and shown in Figure 4: 
 

Table 1: Parameters used in the material model 

𝑬 𝑬𝒔𝒉 𝒇𝒚 𝒇𝑪𝟏𝜺𝒖 𝒇𝒖 𝑪𝟏 

210 𝐺𝑃𝑎 6,185 𝐺𝑃𝑎 690 𝑀𝑃𝑎 740 𝑀𝑃𝑎 770 𝑀𝑃𝑎 0,61 

𝜺𝒚 𝜺𝒔𝒉 𝑪𝟏𝜺𝒖 𝑪𝟐𝜺𝒖 𝜺𝒖 𝑪𝟐 

0,33% 3% 3,81% 4,29% 6,23% 0,69 

 

3.3. Equivalent geometric imperfections 
 

In slender plate elements the geometric and material 
imperfections must be accounted for the calculation of the 
structural strength, once the collapse is governed by plate 
buckling. In addition, there is also the contribution of 
residual stresses, associated with the differential thermal 
effects that take place during the processes of hot rolling 
or welding of the different plates. In that regard, it is 
essential to perform the modelling of the numerical models 
considering an equivalent geometric imperfection, as given 

in EN 1993-1-5 [2]. Thus, 3 different equivalent 
geometric imperfections were developed based on 
periodic functions, and a sensitivity analysis was 
carried out to determine which one should be used in 
the modelling of numerical models. For this purpose, 
a sample of 12 geometries was selected. 
 

i. Equivalent geometric imperfection 1 (IMP 1) 

This equivalent geometric imperfection is a global 
imperfection of the stiffened panel, defined by a sine 
function with an amplitude of ℎ𝑤 400⁄  (Figure 5): 
 
 

▪ IMP 1 +     +𝑠𝑒𝑛 ×  
ℎ𝑤

400
 ▪ IMP 1 -     −𝑠𝑒𝑛 ×  

ℎ𝑤

400
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

ii. Equivalent geometric imperfection 2 (IMP 2) 

The second one results from the crossing of two 
different forms of imperfections: a global imperfection 
of the stiffened panel defined by a sine function with 
an amplitude of ℎ𝑤 400⁄ , coupled with a local 
imperfection of the sub-panels between the stiffener 
and the longitudinal edges, also defined by a sine 
function with an amplitude of 𝑏𝑖 200⁄ , symmetrical in 
relation to the longitudinal stiffener (Figure 6). 
 

▪ IMP 2 +     +
𝑏𝑖

200
× 𝑤𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

𝑠𝑖𝑚é𝑡𝑟𝑖𝑐𝑜 + 𝑠𝑒𝑛 ×  
ℎ𝑤

400
 

▪ IMP 2 -      −
𝑏𝑖

200
× 𝑤𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

𝑠𝑖𝑚é𝑡𝑟𝑖𝑐𝑜 − 𝑠𝑒𝑛 × 
ℎ𝑤

400
 

 
iii. Equivalent geometric imperfection 3 (IMP 3) 

Finally, the third equivalent geometric imperfection is 
based on the previous one, combining a global 
imperfection with a local one. However, in this case 
we assume that the local imperfection is 
asymmetrical in relation to the longitudinal stiffener 
(Figure 7). 
 

▪ IMP 3 +     + 𝑏𝑖

200
× 𝑤𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

𝑎𝑛𝑡𝑖−𝑠𝑖𝑚é𝑡𝑟𝑖𝑐𝑜 + 𝑠𝑒𝑛 × 
ℎ𝑤

400
 

▪ IMP 3 -      + 𝑏𝑖

200
× 𝑤𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

𝑎𝑛𝑡𝑖−𝑠𝑖𝑚é𝑡𝑟𝑖𝑐𝑜 − 𝑠𝑒𝑛 ×  
ℎ𝑤

400
  

 

 

Figure 4: Stress-strain law used in the FEM model 

Figure 5: Equivalent geometric imperfection 

with negative amplitude (IMP 1 -) 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4. Sensitivity to equivalent geometric 
       imperfections 
 

For this purpose, the ultimate resistances of the 
geometries were obtained using the numerical analysis 
software Abaqus [9] when subjected to compression, 
bending moment and transverse stresses, individually, 
where it can be pointed out that the imperfection 2 with 
negative amplitude is the one that generally presents 
the minimum resistances for each geometry.  
The results obtained for the ultimate resistances of the 
different geometries subjected to compression, bending 
moment and transverse stress, numbered from 1 to 12, 
are presented in Figure 8, where the values are 
normalized to the ultimate resistances that were verified 
for panels with IMP 2 with negative amplitude. 
 

4. Numerical results for N, M, V stresses 
4.1. Torsional stiffness of the longitudinal stiffener 
       (𝝈𝒄𝒓.𝒍𝒐𝒄) 
 

A brief analysis on the consideration of the torsional 
stiffness of the longitudinal stiffener was carried out 
along with the calculation of the critical stress 𝜎𝑐𝑟.𝑙𝑜𝑐. For 
this purpose, the ultimate resistance of the 80 
geometries subjected to pure compression were 
calculated following the standard EN 1993-1-5 [2] in two 
different ways, considering a variation of 𝑘𝜎: 𝑘𝜎 = 4, 
corresponding to a situation in which the torsional 

stiffness is neglected, and 𝑘𝜎 = 5,5, where the torsional 
stiffness of the stiffener is considered. It was concluded 
that neglecting this stiffness is always a decision that is 
clearly on the safety side (Figure 9). The ultimate 
resistances to axial compression are normalized to the 
ultimate resistances obtained with 𝑘𝜎 = 4. 

 
 

 

4.2. Analysis of the different numerical models  
 

The analysis is based on the comparison between the 
different design models presented in § 2 and the 
numerical models developed for each geometry of 
longitudinally stiffened slender plates, subjected to the 
stresses N, M, and V, acting separately. It is important 
to note that the results obtained were normalized: 
the axial force was normalized to the plastic axial stress, 
𝑁𝑝𝑙, the bending moment to the effective bending 

moment to the outside plane direction, 𝑀𝑒𝑓𝑓.𝑦, and the 

transverse force to the plastic transverse stress of the 
web, 𝑉𝑝𝑙,𝑤. 

 

 

Figure 6: Equivalent geometric imperfection 

with negative amplitude (IMP 2 -) 

Figure 7: Equivalent geometric imperfection 
with negative amplitude (IMP 3 -) 

Figure 8: Sensitivity analysis to axial stress [a)], bending 
moment [b)] and transverse stress [c)] 

 

Figure 9: Torsional stiffness study with 𝑘𝜎 = 4,0 vs. 𝑘𝜎 = 5,5 



 
 

Table 2: 𝑁𝑏.𝐹𝐸𝑀 𝑁𝑏.𝑅𝑑⁄ , 𝑀𝑒𝑓𝑓,𝑦,𝐹𝐸𝑀 𝑀𝑒𝑓𝑓,𝑦.𝑅𝑑⁄ , 𝑉𝑏𝑤,𝐹𝐸𝑀 𝑉𝑏𝑤,𝑅𝑑⁄  

 𝒂𝒗𝒈 𝒔𝒕𝒅 𝒂𝒗𝒈 𝒔𝒕𝒅 

𝑵𝒃.𝑭𝑬𝑴 𝑵𝒃.𝑹𝒅⁄  𝜶 = 𝟏 𝜶 = 𝟐 

MODEL 1 1,139 4,7% 1,152 12,3% 

MODEL 2 1,140 4,8% 1,156 12,2% 

MODEL 3 1,140 4,8% 1,160 12,1% 

MODEL 4 1,153 5,3% 1,209  

𝑴𝒆𝒇𝒇.𝒚.𝑭𝑬𝑴 𝑴𝒆𝒇𝒇.𝒚.𝑹𝒅⁄  𝜶 = 𝟏 𝜶 = 𝟐 

MODEL 1 1,422 14,6% 1,390 12,4% 

MODEL 2 1,423 14,6% 1,394 12,5% 

MODEL 3 1,422 14,6% 1,391 12,4% 

MODEL 4 1,423 14,6% 1,398 12,4% 

𝑽𝒃𝒘.𝑭𝑬𝑴 𝑽𝒃𝒘.𝑹𝒅⁄  𝜶 = 𝟏 𝜶 = 𝟐 

MODEL 1 0,980 3,4% 0,976 7,4% 

MODEL 2 0,992 3,5% 1,055 7,9% 

MODEL 3 1,056 4,9% 1,106 8,9% 

MODEL 4 1,162 8,2% 1,236 11,5% 
 

Conclusions on the 𝑵𝒃,𝑭𝑬𝑴 𝑵𝒃,𝑹𝒅⁄  analysis: 

▪ There is a similarity of the average and standard deviation 
values obtained for the various design models both for 
𝛼 = 1 or 𝛼 = 2. 

▪ There is practically no difference between the models that 
consider the effect of the torsional stiffness of the stiffener 
and the ones that do not. That is because these structures 
were designed exclusively with one longitudinal stiffener, 
being certain that the differences between the various 
models would be more conclusive with 2 or 3 stiffeners. 

▪ Model 4 – EN 1993-1-5 is associated with a very high 
average compared to the other calculation models, which 
indicates that the current formulations to obtain the critical 
stress 𝜎𝑐𝑟.𝑝 are conservative, especially for higher aspect 

ratios. 
 

Conclusions on the 𝑴𝒆𝒇𝒇,𝒚,𝑭𝑬𝑴 𝑴𝒆𝒇𝒇,𝒚.𝑹𝒅⁄  analysis: 

▪ It´s clear that for the case of longitudinally stiffened slender 
plates subjected to bending moments, the calculation 
models appear to be very conservative and with great 
dispersion of results. 

▪ The high averages obtained for both 𝛼 = 1 and 𝛼 = 2 are 
due to the consideration of the yielding of the tension 
sub-panel in the calculation of 𝑀𝑒𝑓𝑓,𝑦.𝐹𝐸𝑀 through the 

automatic numerical calculation software, something that 

is not estimated in 𝑀𝑒𝑓𝑓,𝑦.𝑅𝑑 through the different design 

models in evaluation based on EN 1993-1-5 [2] 
(Figure 10). 

▪ The buckling modes do not involve the torsional stiffness 
of the stiffener since the plate naturally does not tend to 
rotate there, but on the longitudinal edges. In that regard, 
there is practically no difference between the models that 
consider the effect of the torsional stiffness of the stiffener 
and the ones who that do not. However, studies with 
2 or 3 stiffeners surely would be more conclusive. 

 

Conclusions on the 𝑽𝒃𝒘,𝑭𝑬𝑴 𝑽𝒃𝒘,𝑹𝒅⁄  analysis: 

▪ It is proven why the consideration of the torsional stiffness 
of the longitudinal stiffener should be neglected in the 
structural calculation present in the standard EN 1993-1-5, 
once the first model, which considers this effect, exhibits 
numerous cases where 𝑉𝑏𝑤,𝐹𝐸𝑀 𝑉𝑏𝑤,𝑅𝑑⁄ < 0,90, either for 

𝛼 = 1 or 𝛼 = 2. 
▪ Despite Model 3 presents a number of cases violating the 

condition 𝑉𝑏𝑤,𝐹𝐸𝑀 𝑉𝑏𝑤,𝑅𝑑⁄ < 1,0 higher than for Model 4, it 

appears to be composed by a design method much more 
economic and reliable, once it’s associated with lower 
values of averages and standard deviations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the summary analysis to the results obtained, 
it can be pointed out that Model 4 is a very 
conservative design method, being always 
associated with very high values of averages and 
standard deviations. However, it proves to be well 
structured and calibrated for the calculation of the 
critical stress 𝜎𝑐𝑟.𝑝, both for the axial compression 

and bending moment. Still, a great difference was 
obtained for the calculation of the critical stress 𝜏𝑐𝑟. 
Thus, Model 3 is the one that appears to be the 
best choice to continue this investigation, since it is 
a safe and economical design method, and not so 
on the safe side as the formulas proposed by the 
EN 1993-1-5 [2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

1 2 

3 4 

Figure 10: Effect of the longitudinal stiffener on the 
evolution of compression stresses along a longitudinally 
stiffened slender plate subjected to a bending moment 

in the transverse direction 



 
 

 

 

4.3. Influence of the flanges on the calculation of the 𝑽𝒃.𝑹𝒅  
 

Following Model 3, the next 20 geometries of longitudinally 
stiffened slender plates were considered with the area ratios 
𝐴𝑓 𝐴𝑤⁄ = [0; 0,25; 0,50; 1]: 

▪ ID1_ID5: 
ℎ𝑤

𝑡𝑤
 between 80 and 240 with 𝛾 = 25 and 𝛼 = 1 

▪ ID6_ID10: 
ℎ𝑤

𝑡𝑤
 between 80 and 240 with 𝛾 = 50 and 𝛼 = 1 

▪ ID11_ID15: 
ℎ𝑤

𝑡𝑤
 between 80 and 240 with 𝛾 = 25 and 𝛼 = 2 

▪ ID16_ID20: 
ℎ𝑤

𝑡𝑤
 between 80 and 240 with 𝛾 = 50 and 𝛼 = 2 

 

Attending on Figure 12, there is a clear influence that the 
contribution of the resistance of the flanges, 𝑉𝑏𝑓,𝑅𝑑, has in the 

utimate resistance of the profile to transverse stresses, 𝑉𝑏.𝑅𝑑. 
It appears that, while for webs with a high slenderness the 
dispersion of results is considerably reduced, with a good 
correlation between the ultimate resistances obtained through 
the formulations of the EN 1993-1-5 [2] and the values 
obtained trough automatic numerical calculation programs 
based on finite elements, for webs with an intermediate 
slenderness it is observed a tendency for the ocurrence of 
greater dispersions. That’s due to the fact that, in a first 
instance, EN 1993-1-5 underestimates the value of the 𝑉𝑏𝑓,𝑅𝑑, 

whereas for stronger flanges, with a larger area, it seems to 
overestimate this value. Thus, for this reason, considering 
large areas for the flanges may compromise the structural 
security of the element, especially for intermediate 
slenderness webs, something that had already been 
concluded by Jáger and Kӧvesdi [5, 6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Study of the N-M-V interaction 
5.1. N-M-V interaction following the new Biscaya 
       proposal 
 

Consider the following relations between the applied and 
resistance forces, accounting for the eccentricity due to local 
web buckling, 𝑒𝑁: 

 
▪ 𝜂1.𝑀 =

𝑀𝐸𝑑+𝑁𝐸𝑑.𝑒𝑁

𝑀𝑒𝑓𝑓.𝑅𝑑
 ▪ �̅�3 =

𝑉𝐸𝑑

𝑉𝑏𝑤,𝑅𝑑
 ▪ 𝜂1.𝑁 =

𝑁𝐸𝑑

𝑁𝑒𝑓𝑓.𝑅𝑑
 (4) 

which must be lower or equal to the unit. For an axial force  
𝑁𝐸𝑑 > 0 and �̅�3 ≥ 0,5𝑘, it must be ensured that: 

𝜂1.𝑀 + 𝜂1.𝑁 + (1 −
𝑀f,N,Rd

𝑀eff,Rd
− 𝜂1.𝑁) (

2�̅�3
𝑘
− 1)𝜇 ≤ 1 

, 𝜂1.𝑀 ≥
𝑀f,N,Rd

𝑀eff,Rd
 

(5) 

�̅�3 ≤ 𝑘 +
𝑉bf,N,Rd
𝑉bw,Rd

 [1 − (
𝑀Ed

𝑀f,N,Rd
)

2

] 
, 𝜂1.𝑀 <

𝑀f,N,Rd

𝑀eff,Rd
 

(6) 

 
 
 
 
 

�̅�𝑤 ≥ 1,5 ← 

→ �̅�𝑤 ≤ 1,0 0
,5
5

 

0
,8
5

 

Figure 11: Graphics of Model 3: 
𝑁𝑏.𝐹𝐸𝑀 𝑁𝑏.𝑅𝑑⁄  [a) and b)], 

𝑀𝑒𝑓𝑓.𝑦.𝐹𝐸𝑀 𝑀𝑒𝑓𝑓.𝑦.𝑅𝑑⁄  [c) and d)], 

𝑉𝑏𝑤.𝐹𝐸𝑀 𝑉𝑏𝑤.𝑅𝑑⁄  [e) and f)] 

Figure 12: Influence of the flanges on the calculation of 𝑉𝑏.𝑅𝑑 



 
 

with 𝑘 to be defined as follows: 5.3. N-M-V interaction surface 
 

It is now interesting to explain how the investigation was set 
up in regard to the modelling of the N-M-V interaction 
surface. Briefly, the interaction surface will follow a spherical 
coordinates system, as shown in Figure 13, where the 
coordinates are obtained trough the following equations: 
 

▪ 
𝑁𝐹𝐸𝑀

𝑁𝑀𝑜𝑑𝑒𝑙_3
= 𝐿𝑃𝐹 × cos 𝜃1 × cos 𝜃2 

▪ 
𝑀𝐹𝐸𝑀

𝑀𝑀𝑜𝑑𝑒𝑙_3
= 𝐿𝑃𝐹 × sen 𝜃1 × cos 𝜃2 

▪ 
𝑉𝐹𝐸𝑀

𝑉𝑀𝑜𝑑𝑒𝑙_3
= 𝐿𝑃𝐹 × sin 𝜃2 

  

with 𝜃1 and 𝜃2 varying between 0o and 90o with intervals of 
15o. 
 
 
 
 
 
 
 
 
 
 

 

The plotting of the N-M-V interaction points can be seen as 
the creation of 7 curved surfaces, each one consisting on 7 
interaction points. Figure 14 helps to understand what is 
intended to explain here, where: 

𝑅 = √(
𝑁𝐸𝑑

𝑁𝑒𝑓𝑓.𝑅𝑘
)2 + (

𝑀𝐸𝑑

𝑀𝑒𝑓𝑓.𝑅𝑘
)2 + (

𝑉𝐸𝑑

𝑉𝑏𝑤.𝑅𝑘
)2. 

 

 
Finally, it is worth to make some considerations regarding the 
non-convergence of results derived from problems 
associated with solving non-linear equations systems, as 
seen in §3. Indeed, these situations did hapen in the course 
of the investigation. However, they were properly identified 
and discarted from the statistical analysis, once they do not 
guarantee the reliability deserved for this study. Though, 
despite the fact that these convergence problems occured, it 
should be noted that they represent only 1,4% of the total 
sample, that is from all points of the N-M-V interaction of all 
the 20 geometries under study, and accounting for the 
different 𝐴𝑓 𝐴𝑤⁄  ratios under analysis, so they will not have a 

significant impact on the final conclusions of this 
investigation at all. 

𝑘 

= 1 , 𝜂1.𝑁 ≤ (
Vb,Rd

𝑉bw,Rd
− 1) 𝑖⁄  

(7) 
=
𝑉b,Rd
𝑉bw,Rd

− 𝑖 ∙ 𝜂1.𝑁 , (
Vb,Rd

𝑉bw,Rd
− 1) 𝑖⁄ < 𝜂1.𝑁 ≤

𝑁f,Rd

𝑁eff,Rd
 

= √
1 − 𝜂1.𝑁

𝛽

𝜉
 , 𝜂1.𝑁 >

𝑁f,Rd

𝑁eff,Rd
 

where: 

▪ 𝑀𝑓,𝑁,𝑅𝑑 = 𝑀𝑓,𝑅𝑑(1 −
𝑁𝐸𝑑

𝑁𝑓.𝑅𝑑
), ensuring that 𝑁𝐸𝑑 ≤ 𝑁𝑓.𝑅𝑑. 

Otherwise, it must be considered 𝑀𝑓,𝑁,𝑅𝑑 = 0. 

▪ 𝑀𝑒𝑓𝑓,𝑅𝑑 = 𝑊𝑒𝑓𝑓 × 𝑓𝑦 ▪ 𝑁𝑓,𝑅𝑑 = (𝐴𝑓1 + 𝐴𝑓2) × 𝑓𝑦𝑓 

▪ 𝑉𝑏𝑤,𝑅𝑑 and 𝑉𝑏𝑓,𝑅𝑑 apply formulas (7.1), (7.2) and 

(7.7 with 𝑀𝐸𝑑 = 0) presented in the European 

standard, without the partial factor 𝛾𝑀1. 
▪ 𝑉𝑏𝑓,𝑁,𝑅𝑑 = 𝑉𝑏,𝑅𝑑(1 − 𝑖. 𝜂1.𝑁) − 𝑉𝑏𝑤,𝑅𝑑 ≥ 0 

▪ 𝜇 = (
𝑀f,N,Rd

𝑀eff,Rd
+ 0,2)

15

+ 1 ▪ 𝑖 =
1

2
− 𝑒−�̅� ≥ 0 

▪ 𝛽 = 1 +
1

�̅�2
≤ 2 ▪ 𝜉 =

1−(
𝑁𝑓,𝑅𝑑

𝑁𝑒𝑓𝑓.𝑅𝑑
)𝛽

(1−𝑖.
𝑁𝑓,𝑅𝑑

𝑁𝑒𝑓𝑓.𝑅𝑑
)2

 

 

For longitudinally stiffened slender plates and  
I-girders,  

�̅� = 𝑚á𝑥(�̅�𝑙𝑜𝑐 = √
𝑓𝑦

𝜎𝑐𝑟.𝑙𝑜𝑐
;  �̅�𝑝 = √

𝛽𝐴.𝑐  𝑓𝑦

𝜎𝑐𝑟.𝑝
) 

whereas for unstiffened ones it must be simply 

considered �̅� = 𝜆̅𝑝. In that regard, it is worth noting 

that these values are defined for pure compression 
once this part of the interaction was defined in the 
N-V plane. In addition, studies were made in order 
to validate this proposition, where it could be 
pointed out that, despite for cases with only one 
longitudinal stiffener positioned at half height of the 

web, ℎ𝑤 2⁄ , the parameter that best suits 𝜆̅ is �̅�𝑙𝑜𝑐, 
with rare exceptions, H. Afonso [12], studies 
conducted by Biscaya [1] for slender plates and 
 I-girders with 2 and 3 longitudinal stiffeners 

showed that the best definition for the parameter 𝜆̅ 
is the maximum value of 𝜆̅𝑙𝑜𝑐 and 𝜆̅𝑝, both obtained 

for pure compression, as described in the final N-
M-V interaction proposal. 
 

5.2. Investigated parameter range 
 

The definition of the geometries that were 
considered in this analysis was made in such a way 
that accounted for a vast range of typical plate 
girders. A total of 20 cross-sections were selected 
using the following parameters: 

▪ 
ℎ𝑤

𝑡𝑤
= [80, 120, 160, 200, 240] 

▪ 𝛾 = [25, 50] ▪ 𝛼 = [1, 2] 
 

Thus, the 20 geometries to be used in this final study 
were defined as follows in § 4.3. It is worth noting that 
new geometries were not created here, the initial 
number of 80 is only reduced to 20. Finally, it is 
essential to explain how the flanges were introduced 
in the investigation. To be able to assess the 
contribution of the flanges to increase the structural 
stability of the slender plates, 4 values were defined 
for the ratio of areas 𝐴𝑓 𝐴𝑤⁄ = [0; 0,25; 0,50; 1], with 

𝑏𝑓 = √8 × 𝐴𝑓 and 𝑡𝑓 =
𝑏𝑓

8
. 

 

Figure 13: Illustration of the spherical coordinates system to be 
used 

Figure 14: N-M-V interaction points 



 
 

5.4. N-M-V interaction surface analysis 
 

Table 3: N-M-V interaction according to the standard EN 

1993-1-5 [2] and the Biscaya proposal [1] 

𝑹𝑭𝑬𝑴
𝑹𝑷𝑹𝑶𝑷𝑶𝑺𝑨𝑳

 𝒂𝒗𝒈 𝒔𝒕𝒅 
𝑵𝒄𝒂𝒔𝒆𝒔

< 𝟏, 𝟎 
𝑵𝒄𝒂𝒔𝒆𝒔

< 𝟎, 𝟗 
𝑴í𝒏. 𝑴á𝒙. 

 𝑨𝒇 𝑨𝒘 = 𝟎⁄  

EN 1993-1-5 1,192 13,6% 6,3% 0,2% 0,890 1,637 

PROPOSAL 1,200 12,9% 2,9% 0% 0,956 1,637 

 𝑨𝒇 𝑨𝒘 = 𝟎,𝟐𝟓⁄  

EN 1993-1-5 1,214 9,8% 1% 0% 0,908 1,550 

PROPOSAL 1,190 8,3% 0,4% 0% 0,978 1,405 

 𝑨𝒇 𝑨𝒘 = 𝟎,𝟓𝟎⁄  

EN 1993-1-5 1,203 10,2% 0,3% 0% 0,988 1,600 

PROPOSAL 1,158 7,5% 0,7% 0% 0,968 1,393 

 𝑨𝒇 𝑨𝒘 = 𝟏⁄  

EN 1993-1-5 1,165 10,5% 0,3% 0% 0,996 1,517 

PROPOSAL 1,102 6,9% 5,4% 0% 0,930 1,314 
 

Conclusions on the 𝑹𝑭𝑬𝑴 𝑹𝑷𝑹𝑶𝑷𝑶𝑺𝑨𝑳⁄  analysis:  
 

▪ The new Biscaya proposal [1] gives better results of 

the real N-M-V interaction resistance than the current 
version of EN 1993-1-5 [2], as the differences 
between the averages and the standard deviations 
are considerable. 

▪ It can be pointed out that the new proposal is less 
conservative than the EN 1993-1-5 formulas: it is 
observed that the proposal returns significantly lower 
values of averages for all cases, except for 

𝐴𝑓 𝐴𝑤⁄ = 0, which can be explained by the poor 

calibration of slender plates by the EN 1993-1-5. 
However, since the proposal does not return any 
situations where 𝑅𝐹𝐸𝑀 𝑅𝑃𝑅𝑂𝑃𝑂𝑆𝐴𝐿⁄ < 0,9 and, in 
addition, returns a small number of cases in which 
𝑅𝐹𝐸𝑀 𝑅𝑃𝑅𝑂𝑃𝑂𝑆𝑇𝐴⁄ < 1, still having a lower value for the 
standard deviation, it can be assumed that the new 
proposal is more appropriate for the N-M-V interaction 
assessment. 

▪ The new calculation method seems to be more 
reliable, once it returns lower values for the standard 
deviations, being transversal to the application of the 
flanges, ensuring a smaller dispersion of results and 
consequently a greater reliability of this equations. 

▪ It is confirmed that the contribution of 𝑉𝑏𝑓,𝑅𝑑 in the 

calcultaion of 𝑉𝑏.𝑅𝑑 has a negative effect on the 
N-M-V interaction resistance, having an impact on the 
final results. It can be pointed out that firstly the values 
of the averages increase, and then show a 
successively decreasing trend, confirming what was 
concluded by Jáger and Kӧvesdi [5, 6], regarding the 
erroneous consideration of the contribution of the 
flange shear resistance due to the bad calibration of 

the value of 𝑉𝑏𝑓,𝑅𝑑 by means of parameter 𝑐 (distance 

between the plastic hinges). This subject needs 
further investigation. 

 

The final graphs associated with the results from 
Table 3 are presented in Figures 15 and 16, which show 

the behaviour observed for the different 𝐴𝑓 𝐴𝑤⁄  ratios. 
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b) 

c) 

d) 

e) 

f) 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
There follows a presentation and analysis of some 
N-M-V interaction surfaces chosen so that it is 
possible to identify and assess the impact and 
relevance that some factors have in the design of 
longitudinally stiffened slender plates and I-girders: 
the slenderness of the plate, ℎ𝑤 𝑡𝑤⁄ , the flexural 

stiffness of the longitudinal stiffener, 𝛾, and the aspect 

ratio to consider, 𝛼, considering 𝐴𝑓 𝐴𝑤⁄ = 0,50, always 

based on the new Biscaya proposal [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

g) 

h) 

Figure 15: 𝑅𝐹𝐸𝑀 𝑅𝐸𝐶3⁄  and 𝑅𝐹𝐸𝑀 𝑅𝑃𝑅𝑂𝑃𝑂𝑆𝐴𝐿⁄  for the ratios: 

𝐴𝑓 𝐴𝑤⁄ = 0 [a) and b)], 𝐴𝑓 𝐴𝑤⁄ = 0,25 [c) and d)], 

 𝐴𝑓 𝐴𝑤⁄ = 0,50 [e) and  f)], 𝐴𝑓 𝐴𝑤⁄ = 1 [(g) and h))] 

ID 1 // 𝛾 = 25 // 𝛼 = 1 // 
ℎ𝑤

𝑡𝑤
= 80 // 

𝐴𝑓

𝐴𝑤
= 0,50 

ID 5 // 𝛾 = 25 // 𝛼 = 1 // 
ℎ𝑤

𝑡𝑤
= 240 // 

𝐴𝑓

𝐴𝑤
= 0,50 

ID 3 // 𝛾 = 25 // 𝛼 = 1 // 
ℎ𝑤

𝑡𝑤
= 160 // 

𝐴𝑓

𝐴𝑤
= 0,50 

ID 8 // 𝛾 = 50 // 𝛼 = 1 // 
ℎ𝑤

𝑡𝑤
= 160 // 

𝐴𝑓

𝐴𝑤
= 0,50 

ID 7 // 𝛾 = 50 // 𝛼 = 1 // 
ℎ𝑤

𝑡𝑤
= 120 // 

𝐴𝑓

𝐴𝑤
= 0,50 

ID 17 // 𝛾 = 50 // 𝛼 = 2 // 
ℎ𝑤

𝑡𝑤
= 120 // 

𝐴𝑓

𝐴𝑤
= 0,50 

Figure 16: Effect of the slenderness of the plate ℎ𝑤 𝑡𝑤⁄  

[a) and b)], the flexural stiffness of the longitudinal stiffener 𝛾 
[c) and d)] and the aspect ratio 𝛼 [e) and f)] on the N-M-V 

interaction surface 

a) 

b) 

c) 

d) 

e) 

f) 



 
 

Conclusions on the effect of the slenderness of the plate 
(𝒉𝒘 𝒕𝒘⁄ ): 
▪ There is clearly a notorious difference between considering, 

or not, slender plates. It can be pointed out that while for 
lower values of ℎ𝑤 𝑡𝑤⁄  there is a consistency between the 
N-M-V surface and the interaction points obtained through 
automatic numerical calculation programs of finite elements, 

which appears to be trasversal to the 𝐴𝑓 𝐴𝑤⁄  ratios under 

study, for very slender plates the same does not happen, 
once there is a large resistance reserve in relation to the 
numerical models. 

▪ It is evident that there is a large increase of the resistance 
reserve when the flanges are introduced in the problem, with 
a sucessively reduction of it when the geometry of these 
elements is increased, as mentioned and discussed before. 

 

Conclusions on the effect of the flexural stiffness of the 
longitudinal stiffener (𝜸): 
▪ It is noted that there are no major differences when analysing 

slender plates and I-girders with 𝛾 = [25; 50], due to the fact 
that this investigation only considers weak longitudinal 
stiffeners, which ends up conditioning the occurrence of 
notable dissimilarities. However, there is a slight increse of 
the resistance reserve to higher values of 𝛾, as expected. 

▪ It can be confirmed once again the effect that the influence 
of the flanges appear to have on the development of the 

N-M-V interaction surface: wheras for intermediate 𝐴𝑓 𝐴𝑤⁄  

ratios there is a large reserve of the new proposal in relation 
to the points obtained according to the finite element 
numercial models, it tends to decrease as this quocient 
increases. 

 

Conclusions on the effect of the aspect ratio (𝜶): 
▪ For both aspect ratios aspect ratios 𝛼 = 1 and 𝛼 = 2, 

the resistances obtained using the formulation from 
prEN 1993-1-5 [13] are low when compared to the numerical 

resistances obtained, independently of the 𝐴𝑓 𝐴𝑤⁄  adopted. 

This margin is increased for long web panels with 𝛼 = 2   

▪ The negative effect that the contribution of 𝑉𝑏𝑓.𝑅𝑑 has on the 

design of slender I-girders is confirmed, with notable 
tendency to obtain results outside the safety zone for higher 

𝐴𝑓 𝐴𝑤⁄  ratios and small 𝛼 values, contributing to a lower 

resistance reserve of the N-M-V interaction surface in 
relation to the numerical interaction points. 

6. Main conclusions 

From studies on the N-V and N-M-V interaction behaviour of 
longitudinally stiffened I-girders with slender webs, the 
following main conclusions are drawn: 

▪ The question of whether to consider, or not, the torsional 
stiffness of the closed section longitudinal stiffener in the 
design of these profiles was analysed, where the critical 
stresses 𝜎𝑐𝑟.𝑙𝑜𝑐, 𝜎𝑐𝑟.𝑝, and 𝜏𝑐𝑟 were analysed: 

1. 𝜎𝑐𝑟.𝑙𝑜𝑐 (Figure 9): using 𝑘𝜎 = 4 in the calculation of 𝜎𝑐𝑟.𝑙𝑜𝑐, 

which is the same as neglecting this rigidity, the results will 
always be on the safety side, confirming the note present 
on the European standard EN 1993-1-5 [2] in that regard. 

2. 𝜎𝑐𝑟.𝑝 and 𝜏𝑐𝑟 : 4 different models were developed, all based 

on the formulation present in the EN 1993-1-5, where the 
only difference is based on how these critical stresses were 
obtained: for the first 3 models through EBPlate [8], with  

and without considering the torsional stiffness of 
the longitudinal stiffener, whereas for Model 4, all 
formulations of the prEN 1993-1-5 [13] were 
followed. 

2.1. It is concluded that Model 4 – EN 1993-1-5 is 
very conservative when compared to the other 
models, showing to be a methodology that is well 
calibrated for the calculation of the critical stress 
𝜎𝑐𝑟.𝑝 , but not for the calculation of 𝜏𝑐𝑟. 

2.2. It is also concluded that EN 1993-1-5 [2] does 
not consider the redistribution of stresses that the 
longitudinal stiffener provides when the slender 
plate is subjected to bending moments 
(Figure 10), giving a large resistance reserve, 
contributing to an excessive conservatism. 

2.3. Model 3 is the one that provides the best 
results, as it is a safe and economical calculation 
methodology,  for the design of longitudinally 
stiffened slender plates and I-girders. 

▪ Regarding Biscaya new interaction proposal 

[1], it was analysed what value of 𝜆̅ should 
appear on it. It was concluded that, despite for 
the case of a longitudinal stiffener at mid height 

of the web, it should be assumed 𝜆̅ = 𝜆̅𝑙𝑜𝑐 , with 
rare exceptions, further studies with 2 and 3 

stiffeners have shown that 𝜆̅ should be given 
by: 

�̅� = 𝑚á𝑥 (�̅�𝑙𝑜𝑐 = √
𝑓𝑦

𝜎𝑐𝑟.𝑙𝑜𝑐
;  �̅�𝑝 = √

𝛽𝐴.𝑐  𝑓𝑦

𝜎𝑐𝑟.𝑝
) 

both evaluated for pure compression. 

▪ Comparing the data collected using the 
interaction equations suggested by the 
European standard and the new Biscaya 
proposal, the new N-M-V interaction equations 
prove to be more reliable from the point of view 
of the non-dispersion of results, being also 
more economical due to their lower 
conservatism. In addition, it is confirmed that it 
is a calculation method transversal to the use, 
or not, of longitudinal stiffeners, one of the main 
aims of this investigation, validating the initial 
premise. 

▪ Common to all these analyses are undoubtedly 
the influence of the contribution of 𝑉𝑏𝑓.𝑅𝑑 on the 

design of these structures. In Figure 12, it is 
clearly identified the effect that the contribution 
of 𝑉𝑏𝑓.𝑅𝑑 has on the ultimate resistance 𝑉𝑏.𝑅𝑑  of 

the profile, with direct implications on the 
N-M-V interaction results. This is essentially 
due to the fact that, in a first instance, 
EN 1993-1-5 underestimates the value of 
𝑉𝑏𝑓.𝑅𝑑, whereas for more strong flanges, this 

parameter is overestimated, resulting on higher 
resistances than the ones obtained by the 
corresponding numerical models. 
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